
Cebinae: Scalable In-network Fairness Augmentation
Liangcheng Yu

University of Pennsylvania
leoyu@seas.upenn.edu

John Sonchack
Princeton University

jsonch@princeton.edu

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

ABSTRACT
For public networks like the Internet and those of many clouds,
end-host applications can use any congestion control protocol they
wish. This protocol diversity and application autonomy are only
increasing over time. While in-network support for fairness is an at-
tractive solution for reigning in the inequity, existing solutions still
have difficulty scaling to today’s networks using today’s devices.

In this paper, we present Cebinae, a mechanism for augmenting
existing networks of legacy hosts with penalties for flows that ex-
ceed their max-min fair share. Cebinae is compatible with all of the
congestion control protocols in today’s Internet, is deployable on
commodity programmable switches, and scales orders of magnitude
beyond existing alternatives.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; Network control algorithms; Public Internet; Transport
protocols; Network monitoring; Network management; Network
dynamics; Network performance analysis;

KEYWORDS
Programmable networks, P4, Congestion control, Max-min fairness
ACM Reference Format:
Liangcheng Yu, John Sonchack, and Vincent Liu. 2022. Cebinae: Scalable
In-network Fairness Augmentation. In ACM SIGCOMM 2022 Conference
(SIGCOMM ’22), August 22–26, 2022, Amsterdam, Netherlands. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3544216.3544240

1 INTRODUCTION
Congestion control is one of the most fundamental components of
the Internet. Pioneered in the 1980s to avert congestion collapse,
congestion control—in its various forms—is still a core responsibility
of nearly every transport-layer protocol in existence. In each case,
the goal is to ensure that all of the disparate connections in the
Internet (collectively) use its capacity efficiently and fairly.

Unfortunately, while TCP is generally effective at eventually
consuming all available network capacity, it has never really been
fair. Even in the early days of the Internet, when congestion control
was relatively homogenous, differing RTTs (i.e., the typical case in
the Internet) resulted and continue to result in unfair allocations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544240

Different congestion control algorithm variants—or even operating
systems’ implementations or configurations of the same variant—
can lead to similar results [44, 46, 52, 57]. To be clear, the above in-
novations in congestion control have made tangible improvements
to the quality of experience of Internet users. Further, because ap-
plications can have diverse requirements for their transport-layer
protocols (e.g., for backward compatibility, small-flow efficiency, or
jitter), new protocols can serve important purposes in the continual
evolution of the Internet.

Even so, as evidenced by the cited examples, the traditional
approach of relying on end hosts to self-police their ‘TCP friend-
liness’ [40, 58] has led to inconsistent results. It is also important
to note that many of the above instances of unfairness are more
than just a new protocol that can ramp up to its fair share more
quickly—they describe converged behavior and the possibility of
persistent starvation.

Fundamentally, there are few incentives for hosts to prioritize
others’ fair share and even fewer consequences for failing to do so.
We note that cloud deployments do not escape these challenges,
especially given the trend toward user-space networking, where
enforcing congestion control adherence becomes more difficult.

In the end, when fairness is required in either the public cloud
or the Internet, the only actors with an incentive to effectuate
it are the network operators. For that reason, there have been
many proposals for network-supported fairness. In some, routers
compute and communicate explicit rates that are guaranteed to be
both fair and efficient [18, 29, 42]. In others, the routers implement
specialized queuing disciplines like fair queuing [39, 47, 51] or
preferential variants of AQM [38, 41] to achieve similar results.

Unfortunately, the router modifications required by the above
approaches have, thus far, limited their practicality. For example,
AFQ [47] recently showed how to approximate fair queuing in com-
modity programmable switches, which was a substantial improve-
ment over the hardware requirements of prior work. Conceptually,
fair queuing operates by assigning every flow to an independent
queue, and serving each in per-bit round-robin order. AFQ follows
prior work in virtualizing the per-flow queues [17]; however, to sim-
ulate a fair-queuing schedule, its accuracy still requires the exclusive
use of many priority levels and restrictions on the amount of usable
buffer for each flow—both limitations grow more stringent with
higher flow count, RTT, and burstiness. Thus, for networks with
existing needs for differentiated service and networks with many
flows, WAN connections, or less-disciplined congestion control
variants, e.g., the Internet and public clouds, the requirements on
queuing resources can quickly exceed typical hardware resources.
Other approaches, such as those that rely on ingress admission
control rather than per-flow queuing (e.g., [38]), skip the expensive
per-flow queue tracking but are insufficient for today’s Internet,
which contains congestion control algorithms that ignore loss (e.g.,
BBRv1 [14]).

219

https://doi.org/10.1145/3544216.3544240
https://doi.org/10.1145/3544216.3544240
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

G
o

o
d

p
u

t
[M

B
p

s
]

Time [s]

FIFO (RTT = 20.4 ms)
FIFO (RTT = 40 ms)

Cebinae (RTT = 20.4 ms)
Cebinae (RTT = 40 ms)

Figure 1: The fairness of two New Reno flows with differ-
ing RTTs with and without Cebinae (the background color
indicates Cebinae’s state: unsaturated, red-bottlenecked/blue-
bottlenecked).

In this paper, we advocate for Cebinae1, a simpler approach to
eventual in-network fairness. Cebinae at a single router pushes the
allocation of attached links towards max-min fairness regardless
of the resident congestion control algorithms; applied across a
network with congestion-controlled hosts, it provides equivalent
steady-state global max-min fairness convergence properties as fair
queuing and related techniques.

Cebinae is based on two key insights. First is the observation that
byte- or packet-level scheduling at every instance in time is overkill
for global convergence; instead, it suffices for the network to re-
distribute bandwidth from flows that have met/exceeded their fair
share to flows that have not. The second is that this simplification
enables extremely efficient approximations of advanced scheduling
logic like leaky-bucket filters with minimal resources (just one extra
queue priority) and greatly improves on the scalability of existing
approaches. While gradual redistribution may not provide the rigid,
packet-level guarantees of fair queuing, it preserves the capability
of mitigating unfairness in practical settings.

We validate the feasibility and performance of Cebinae under a
diverse set of network environments in both a hardware testbed and
simulation. Figure 1 shows one such result, illustrating Cebinae’s
effect for two TCP New Reno flows with differing RTTs. This paper
makes the following contributions:

• We present Cebinae, the first in-network mechanism that
can scale fairness augmentation to the Internet and public
clouds using only commodity programmable switches.

• We introduce a novel and general technique for shaping
loss-, latency-, and ECN-based congestion control algorithms
using minimal hardware resources (just one extra priority)
and buffer conservation. Cebinae can, therefore, tolerate a
wide range of congestion control algorithms.

• Finally, we develop prototype implementations for both
Tofino programmable switches and NS-3 simulator. We use
them to show that Cebinae can effectively mitigate unfair-
ness in a wide range of scenarios. Cebinae source code is pub-
licly available at https://github.com/eniac/Cebinae.

2 BACKGROUND
Network capacity is a limited resource. Thus, networks rely on
congestion control protocols to ensure that the limited capacity is
utilized and utilized well. Without them, the network can waste
1Named after capuchin monkeys, the animal species in the first experimental study
that showed an understanding of fairness (inequity aversion) in non-humans.

significant resources on packets that will be dropped and their
resulting retransmissions; this effect would often severely limit
goodput in the early Internet.

Objectives. Traditionally, congestion control algorithms are ex-
pected to provide at least two critical properties: efficiency and
fairness. Efficiency in this context is typically defined as Pareto-
efficiency. A given allocation of flow rates {𝑟1, . . . , 𝑟𝑁 } is Pareto-
efficient if and only if an increase in any rate 𝑟𝑖 necessitates a
decrease in another flow’s rate 𝑟 𝑗 . Fairness has a wider range of
possible objectives, e.g., max-min fairness [8, 28], proportional fair-
ness [31], generalized utility [8], or more complex metrics [23, 56].
Among these, max-min fairness often serves as the canonical objec-
tive [28, 47, 56] as it achieves Pareto efficiency with the additional
desirable property that an increase in any flow’s rate necessitates a
decrease in a smaller flow’s rate.

The speed at which protocols converge to the above objectives
forms a separate axis; however, particularly for fairness, the behav-
ior of protocols after convergence is of paramount importance as
persistent unfairness can lead to resource starvation.

Unfairness in the Internet. While modern congestion control
algorithms are typically adept at quickly ramping up to efficient
utilization of network capacity, they are often incongruously in-
effective at achieving fairness. Even when competing with other
connections using the same algorithm, differences in RTTs, for
instance, can cause arbitrary levels of persistent unfairness.

Between different algorithms a continual push toward faster
and more efficient bandwidth exploration/management has led to
several well-known instances of fairness violations. TCP Cubic, for
example, can outcompete New Reno flows to obtain up to 80% of
the shared bottleneck link capacity [44]. More recently, researchers
have shown that a single connection of the next-generation protocol
TCP BBR ramps up to 40% of link capacity when placed against any
number of Cubic or New Reno flows [44, 46, 57].

In-network fairness enforcement. In order to address some of
the above weaknesses in end-to-end congestion control, many have
proposed mechanisms for in-network fairness enforcement. For
example, in fair queuing [39] every flow is assigned to a (concep-
tually) separate queue. These queues can be serviced in per-bit
round-robin order, such that all flows with sufficient demand are
guaranteed to receive the same proportion of bandwidth.

Traditionally, implementing this strategy required specialized
hardware support for scheduling and dequeuing packets in the
correct order. AFQ [47] represented a substantial step forward by
demonstrating that it is possible to emulate fair queuing on com-
modity programmable switches without purpose-built fair-queuing
hardware. It does so with a calendar queue approach [48] in which
the switch allocates 𝑛𝑄 queues/priorities representing future time
slots of BpR bytes. AFQ switches track the bandwidth usage of
every active flow. For each incoming packet, they (1) compute the
time the packet would have been scheduled in an ideal fair-queuing
system and (2) place it in the BpR bucket corresponding to the
correct time slot. The switch will drop the packet if the target time
bucket is more than 𝑛𝑄 slots in the future.

While effective for local data center clusters running low-latency
congestion control protocols, approaches like the above do not scale

220

https://github.com/eniac/Cebinae

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

to the Internet and public clouds, which have multiple network
bottlenecks, a diverse range of congestion control algorithms, and
high RTTs (in addition to being particularly susceptible to issues of
unfairness). Consider, for instance, a switch with 10 active flows
but with 9 of them bottlenecked at an upstream device. Because
every flow in a fair-queuing system has an equal share of capacity2,
BpR must satisfy the following condition for every flow:

buffer_req ≤ BpR × Nq (1)

where buffer_req is the buffer necessary for the flow’s protocol (the
bandwidth-delay product in the worst case). Higher latencies, link
capacities, and burstiness necessitate higher Nq and BpR values.

Crucially, the above values need to be configured based on the
largest buffer_req of any flow in the network, which may be extreme
for public networks or those that carry WAN connections. Further,
we note that network bandwidth is currently outpacing device
memory buffers, putting additional pressure on these hardware
requirements. Even with sufficient resources, however, reserving
high values of Nq impinges on existing prioritization needs, and
configuring high BpR is directly correlated to unfairness.

3 CONCEPTUAL FOUNDATIONS
In this section, we describe the conceptual foundations that in-
spire Cebinae’s operating principle. In particular, to understand
why Cebinae can achieve similar results to fair queuing in a more
scalable fashion, we first re-examine the relevant formalism behind
the max-min fairness objective in Section 3.1 before discussing its
implications in Section 3.2.

3.1 Max-min Fairness
The classic definition of max-min fairness is provided below. We
refer readers to [8] for a more complete treatment of the below
definitions and proofs.

Definition 1. Let 𝑅 be the set of all possible flow-rate allocations
that satisfy the capacity constraints of the network. An allocation
of rates ®𝑟 = {𝑟1, . . . , 𝑟𝑛} in 𝑅 is “max-min fair” if and only if, for all
other allocations ®𝑠 ∈ 𝑅 and all flows 𝑖:

𝑠𝑖 > 𝑟𝑖 =⇒ ∃ 𝑗 : (𝑟 𝑗 ≤ 𝑟𝑖 and 𝑠 𝑗 < 𝑟 𝑗)
In other words, there exists in the other allocations, ®𝑠 , a smaller
flow, 𝑟 𝑗 , that loses capacity.

Flow allocations that are max-min fair are provably Pareto-
efficient and unique under common network assumptions.

The most common method of computing the above allocation is
an iterative water-filling algorithm. Intuitively, the algorithmworks
by initializing all flows as ‘unconstrained’ with a rate of 0. In every
iteration, the algorithm adds an equal amount to all unconstrained
flows until at least one link in the network becomes saturated. All
flows that traverse the saturated link are now considered ‘con-
strained.’ The algorithm iterates until all flows are constrained.

Traditional TCP congestion avoidance share many similarities to
the water-filling algorithm. In the ideal case, the rate of all senders
is increased by one MSS per RTT until they either satiate their de-
mand or they detect congestion and become ‘constrained.’ In reality,

2WFQ introduces a weight to the fair share, but a similar argument applies.

however, TCP diverges from the above algorithm in numerous and
significant ways. Flows are not simultaneously initialized with zero
rates, rate increments are not simultaneous nor uniform (depending
on RTTs), real applications do not have infinite demand, sending is
often based on unacknowledged bytes rather than fixed rates, and
connections can have heterogeneous congestion detection meth-
ods (e.g., loss, delay, ECN, hybrid, etc.) and increase/decrease al-
gorithms [16]. These discrepancies can explain many of the issues
with fairness in the modern Internet.

Fair queuing implements the water-filling framework at each
output queue slightly more precisely by (again, ideally) granting
each flow a single bit of capacity in round-robin order until it either
satiates all flows or saturates the link’s capacity.

3.2 The Cebinae Approach
We note that the water-filling algorithm and the provable unique-
ness of max-min-fair allocations provide an alternative definition
of max-min fairness to Definition 1:

Definition 2. An allocation of rates ®𝑟 = {𝑟1, . . . , 𝑟𝑛} in 𝑅 is “max-
min fair” if and only if, for all flows 𝑟𝑖 , there exists at least one
bottleneck link for 𝑟𝑖 , ℓ , that satisfies both the following properties:

• ℓ is saturated. Specifically, capacityℓ =
∑

𝑗 ∈𝐿 𝑟 𝑗 , where 𝐿 is
the set of all flows utilizing ℓ .

• 𝑟𝑖 is the largest flow. Specifically, ∀𝑗 ∈ 𝐿 : (𝑟𝑖 ≥ 𝑟 𝑗).

[8] includes a proof of this definition, but a reader can develop
an intuition for the reasoning by relating it to the water-filling
algorithm, which operates by finding the bottleneck link for each
flow and, once found, setting the flow to the ‘constrained’ state
while other flows continue to increase.

Cebinae makes the observation that, aside from being both nec-
essary and sufficient, Definition 2 lends itself to an efficient and
distributed verification of the max-min fairness of a network. Specif-
ically, every link can determine the precise set of flows for which it
is the bottleneck:

(1) If the link is not saturated, it is not a bottleneck for any flow
currently using the link. As the link has additional capacity,
any flow can capture more bandwidth without impacting
any other flow (bigger or smaller).

(2) If the link is saturated, then for each flow 𝑖 on the link:
(a) If 𝑖 has the largest rate among the locally competing flows,

then this link is 𝑖’s bottleneck. Even if 𝑖 can capture more
bandwidth, it can only do so at the cost of other flows.
Note that multiple flows can be bottlenecked by the same
link if their rates are equal.

(b) If 𝑖 does not have the largest rate on the link, then the link
is not 𝑖’s bottleneck. 𝑖 may or may not have a bottleneck
link elsewhere in the network.

Crucially, each of the above cases can be differentiated using
only local information in the form of an aggregate byte counter (to
differentiate cases 1 and 2) and heavy-hitter-only flow-size tracking
(to differentiate 2a and 2b). Just as important, it centers around
a classification with only two groups: bottlenecked and not bot-
tlenecked. As we will see in Section 4, a two-group classification
lends itself to fundamentally more efficient programmable-switch
implementations than any approach with more differentiation.

221

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

10

C

D

E

A

B

C = 6 x {A, B, D, E}

(a) Single bottleneck

A

B
C A = 10 x B = 100 x C

!1: 20

!2: 10

!3: 20

!4: 20

!5: 2

(b) Multiple bottlenecks

Figure 2: Two examples of unfairness. One over a single bot-
tleneck and another in a network with multiple potential
bottlenecks. In (a), flow 𝑨 can capture and hold bandwidth
6× as efficiently as all other flows; In (b), flow 𝑨 can get 10×
as much bandwidth as 𝑩 and 100× as much as 𝑪 .

At a high level, Cebinae uses the above classification by imposing
a limitation on only flows with a bottleneck link (i.e., that have
already met or exceeded their fair share). Cebinae prevents these
flows from claiming additional bandwidthwhile others can continue
to grow at their expense.

Strawman solution. A naïve version of this approach would be
for every router in a network to detect the saturation of their links
and impose a token-bucket rate limit on all flows of the maximal
size; limits are released when aggregate demand drops below the
link’s capacity. There are two main issues with this strawman.

The first is that, while the strawman can take an existing max-
min-fair allocation and prevent flows from taking additional band-
width unfairly, it cannot make an already-unfair allocation fair.
To illustrate this effect, consider the example in Figure 2a, with a
TCP variant that can take and hold 6× as much bandwidth as a
competing variant. Given the converged allocation of {1,1,6,1,1}, the
strawman solution will correctly limit the aggressive flow’s band-
width because it has already achieved its fair share. Unfortunately,
the other flows do not have a mechanism to claim their own fair
share and will languish even though they do not have a bottleneck
link. Networks can enter such unfair allocations in many different
ways, including from previously fair allocations. For example, a
similar scenario to Figure 2a can arise when a flow operating in
isolation captures the majority of a link’s bandwidth, then four new
flows join.

The second issue is that modern congestion control algorithms
have become diverse, not just in their approaches to rate allocation,
but also in the congestion control signals they leverage. Algorithms
that ignore loss and focus solely on delay, for instance, may not be
responsive to a simple token-bucket filter, or they may treat the
loss more seriously than necessary.

Cebinae bandwidth redistribution. Cebinae differs from the
above strawman in at least three ways.

First, rather than freezing the bottlenecked flow(s) to their last
known rate, Cebinae instead attempts to redistribute a small fraction
of the flows’ bandwidth; in effect, a tax on the largest flow(s) on
each link. Although this tax imposes some overhead on the worst-
case throughput of the network, it also ensures that flows that
take more than their fair share of the network will not be able
to dominate the network forever. In addition, the tax rate 𝜏 is a
configurable parameter that allows operators to explicitly trade

off the convergence speed with the overhead of the approach. In
our experiments, we found that tax rates as low as 1% were robust
across a wide range of protocols and configurations.

Second, to promote stability and amortize the taxation among
flows, Cebinae applies the tax to the maximal-rate flow(s) as well as
any flow within 𝛿 of the maximum, where 𝛿 is another configurable
parameter that represents the amount of allowed unfairness, as a
fraction of the link’s maximal rate.

Finally, to better serve modern congestion control needs, Cebi-
nae adds delay and ECN as additional signals of congestion that
trigger before packet loss. It does so with the help of a modified
and approximated leaky-bucket filter.

Examples of the Cebinae approach, in context. In order to
develop an intuition for how and why Cebinae’s binary taxation
approach works, we can consider a few concrete examples.

(1) Fair flows on a single bottleneck link: The first and most
straightforward is a correct, max-min allocation. For example, take
the topology of Figure 2a with a modification where all five flows
are homogeneous (same demand, same algorithm, same RTT, etc.).
Starting from an empty network, all flows will increase their send-
ing rates equally until the link saturates. At that point, all of the
flows should exhibit roughly equal rates. Cebinae will detect that
the network is saturated and tax all flows by 𝜏 . Eventually, Cebinae
will detect that the network is no longer saturated and remove all
limits, allowing the flows to reclaim the taxed capacity. Utilization
will fluctuate around full capacity but will never decrease by more
than 𝜏 .

Note that, in principle, Cebinae could detect this case and decline
to levy any tax; however, new flows may suffer if the existing
flows are more aggressive (at least until Cebinae notices the new
unfairness). Cebinae instead chooses to ensure that there is always
room for new flows to grow.

(2) Unfair flows on a single bottleneck link: Now consider the same
topology with the scenario introduced in the strawman discussion.
Again starting from empty, the aggressive flow will initially acquire
six units of capacity, while all other flows only get one. When the
link reaches saturation, Cebinae will rate-limit the aggressive flow
to a rate of 6(1−𝜏). The other flows are then allowed to reclaim the
taxed capacity. After they do so, the link will again saturate, and
Cebinae will further limit the aggressive flow to 6(1−𝜏)2. Assuming
that the more aggressive flow can always claim capacity up to its
original rate, the network will converge to max-min fairness in
ln(2/3)
ln(1−𝜏) timesteps, at which point it will proceed to fluctuate in a
manner similar to Example (1).

This example demonstrates some of the principal benefits of
Cebinae. In particular, that Cebinae enables flows to capture ca-
pacity in an underutilized link as quickly as possible—as quickly
as they would without fairness augmentation. After they capture
the capacity, Cebinae’s bandwidth redistribution drives the alloca-
tion toward a more fair configuration, regardless of the congestion
control algorithms involved.

(3) Unfair flows on multiple bottleneck links: Definition 2 ensures
that Cebinae’s approach to single-device fairness extends to a net-
work of devices and bottlenecks.

222

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Port Saturation

Detector

Flow Bottleneck

Detector

Port Saturation

Detector

Flow Bottleneck

Detector

Ingress Egress

Control Plane

⊤

⊥

⊤

*

Packet

Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

(a) Normal operation

Port Saturation

Detector

Flow Bottleneck

Detector

Ingress Egress

Control Plane

⊤

⊥

⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Port

Saturation

Flow

Bottleneck

ROTATE

!

Packet

Generator

(b) During control-plane modification

Figure 3: An overview of Cebinae’s per-router architecture, both (3a) during normal operation and (3b) during a control-plane-
/packet-generator-aided reconfiguration. In 3a, the bottlenecked flows (⊤) have exceeded their headq allocation, but the other
flows (⊥) have not; headq has higher priority than ¬headq. In 3b, bold red markings indicate the changes made by the control
plane using serializable transactions.

Param. Description

𝛿𝑝 The threshold for the port saturation status.
𝛿𝑓 The threshold for the flow bottleneck status.
𝜏 The Cebinae tax rate.
𝑃 The number of dT periods before we recompute utilization and rate

limits.
𝐿 Control-plane reconfiguration deadline.
dT The time allocated to each physical bucket (2𝑛).
vdT The time in each virtual bucket (2𝑚,𝑚 < 𝑛).

Table 1: Configurable parameters of Cebinae. We discuss
expected values of these parameters in Section 4.4.

For example, consider the case in Figure 2b, with three flows
of greatly differing ability to acquire and hold bandwidth. The
initial allocation of this network would have the largest flow, 𝐴,
take ∼18 units of capacity, while 𝐵 and 𝐶 take ∼1.8 and ∼0.18
units, respectively. In this allocation, 𝐴 is bottlenecked on ℓ3. Again
assuming that 𝐴 retains its competitive advantage, a tax rate of
𝜏 = 1% would reduce it to ∼18 ∗ 0.99 = 17.84, leaving 𝐵 and 𝐶 free
to increase to ∼1.8+ 0.18 ∗ 10/11 = 1.97 and ∼0.18+ 0.18 ∗ 1/11 = 0.197,
respectively.

The above process will continue until 𝐵 and 𝐶 can occupy an
aggregate of 10 units of capacity. At that point, flow𝐴 will fluctuate
around its optimal based on the actions of its bottleneck link (ℓ3),
and ℓ2 will start to consider 𝐵 as constrained. The system has still
not converged, however, as 𝐶 has no bottleneck link. Instead, ℓ2
needs to tax and redistribute capacity from 𝐵 to 𝐶 in a manner
similar to Example (2). Eventually, 𝐴 will be bottlenecked by ℓ3, 𝐵
by ℓ2, and 𝐶 by ℓ5, achieving global max-min fairness.

Comparison to fair queuing. As Example (3) illustrates, Cebinae
does not guarantee perfect fairness at every instance in time as
proceeds from its taxes are not redistributed equally. Instead, Cebi-
nae focuses on mitigating unfairness by preventing flows that take
more than their fair share from continuing to take more than their
fair share. With stable demands, the system will reach steady state
in bounded time, though the steady state may involve oscillations
between a few fixed configurations, e.g., the oscillations around full
capacity in Example (1). The advantage of this approach is simpler
implementation and improved scalability, especially in the presence
of numerous and/or bursty flows.

4 THE DESIGN OF CEBINAE
Note that, as with prior work, the above analysis assumes protocols
that respond to capacity limitations [19, 43]. A blind UDP flow, for
instance, may unnecessarily waste network bandwidth before being
delayed and dropped by a downstream Cebinae router. Addressing
this requires network-level admission control, which is orthogonal
to our core mechanism.

The design of Cebinae is guided by the following principles.

Be agnostic to congestion control algorithms. Cebinae should
not assume anything about the specifics of the congestion control
algorithms that are using it, except that they make some effort to
control congestion. This includes but is not limited to assumptions
about congestion signals, buffer utilization patterns, and burstiness.

Minimize hardware overheads. Cebinae also seeks to maximize
usable buffer, minimize the requirements on queues and priority
levels, and incur no recirculation. For a system that needs to inject
delay with FIFO queues without recirculation, two priority levels is
the provable minimum, and Cebinae achieves it.

Never make unfairness worse. Finally, Cebinae should ensure
that no flow is taxed that does not deserve it. This means bottleneck
detection and classification should not be prone to false positives,
e.g., because of hash collisions. False negatives, on the other hand,
are tolerable as those flows will simply compete with others exactly
as they do today.

Figure 3a illustrates Cebinae’s high level architecture. As previ-
ously mentioned, Cebinae does not require changes to end hosts or
explicit coordination between different network devices. Instead,
Cebinae routers can be considered in isolation, with each router
containing three components:
• An egress-pipeline flow-rate cache that tracks port saturation
and bottleneck flow statuses at a fine granularity.

• An ingress-pipeline flow scheduler that injects delay/loss into
bottlenecked flows to cap and redistribute their bandwidth.

• A low-latency control plane agent that records flow rates and
dynamically adjusts bottleneck flow membership and sending
rate limits.

To implement the approach described in the previous section,
the control plane—at a fine granularity—polls the egress pipeline for

223

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu� �
last_headq = headq
headq = DP.get_headq()
if headq == last_headq: continue
busy_sleep(dT - L)
configure_rates_and_swap_queue_priorities()
if ++recomputation_counter % P != 0: continue

last_port_bytes = port_bytes
port_bytes = DP.get_port_bytes()
flow_bytes = DP.get_flow_bytes()
for p in PORTS:

byte_count = port_bytes[p] - last_port_bytes[p]
if byte_count / CAPACITY[p] < 1 - 𝛿𝑝:

DP.set_unbottlenecked(p)
continue

max_flow_bytes = max(flow_bytes[p])
bottleneck_bytes = 0
for f in flows:

if flow_bytes[p][f] >= max_flow_bytes * (1 - 𝛿𝑓):
DP.set_bottlenecked(f)
bottleneck_bytes += flow_bytes[p][f]

else:
DP.unset_bottlenecked(f)

bottleneck_bytes *= (1 - 𝜏)

DP.set_⊤_rate(p, headq, bottleneck_bytes/dT)
DP.set_⊥_rate(p, headq,

(CAPACITY[p] - bottleneck_bytes)/dT)� �
Figure 4: Pseudocode for Cebinae’s control plane agent. Some
optimizations and details omitted for readability. Note that
all data-plane reads are serializable, as are data-plane writes.

information on link and flow utilization, then manages the ingress
flow scheduler accordingly. To ensure both speed and transactional
isolation, the system is built on the Mantis [60] switch-reaction
framework. While Cebinae operates canonically on the basis of
flows, the mechanism can be generalized to alternative methods of
traffic attribution [10, 11, 37, 45] through modifications to the unit
identifiers in its rate accounting, membership management, and
rate limiters. In this section, we describe the details of Cebinae’s
implementation in the context of a bottleneck flow’s typical life-
cycle. Throughout, we will refer to Table 1 for relevant parameters.

4.1 Detecting Port Saturation
In the flow-bottleneck detection procedure described in Section 3.2,
the first decision depends on whether the target link is saturated
(as unsaturated links do not act as a bottleneck for any flow). To
accurately determine saturation, Cebinae tracks utilization at the
egress pipeline, where it maintains a simple transmit byte counter
for each port, stored as elements in a register array. Note that
the Mantis framework requires a shadow copy of each element to
guarantee consistency with other data-plane reads/writes.

The Cebinae control plane agent periodically samples the register
array and, without resetting the counters, computes the observed
difference from the previous iteration to find the utilization during
the last interval, dT. If the utilization is above (1 − 𝛿𝑝) · capacity,
the link is considered saturated.

4.2 Detecting Bottlenecked Flows
If there is a positive determination of port saturation, Cebinae then
determines which flows are bottlenecked by the current link. From

� �
1 // vdT_mask = ¬((1<<log2(vdT)) - 1) [usually all 1s]
2 f = pkt.egress_port << ⊤.contains(pkt.flow)
3
4 if pkt.type == ROTATE:
5 bytes[f] = max(bytes[f] - pkt.last_rate * dT, 0)
6 base_round_time += dT
7 headq = ¬headq
8 drop pkt
9
10 elif pkt.type == NORMAL and egr_saturated(pkt):
11 if current_time >= (round_time + vdT):
12 round_time = current_time & vdT_mask
13 relative_round = (round_time - base_round_time) / vdT
14
15 if relative_round < dT/vdT: // in headq
16 aggregate_size =
17 rate[headq][f] * relative_round * vdT
18 elif relative_round < 2*dT/vdT: // in ¬headq
19 aggregate_size = rate[headq][f] * dT +
20 (relative_round-dT/vdT) * rate[¬headq][f] * vdT
21 // else: should never happen
22
23 bytes[f] = max(bytes[f], aggregate_size) + pkt.size
24 past_head = bytes[f] - rate[headq][f] * dT
25 past_tail = past_head - rate[¬headq][f] * dT
26 // optionally mark ECN bits
27
28 if past_head <= 0:
29 enqueue(headq)
30 elif past_tail <= 0:
31 enqueue(¬headq)
32 else:
33 drop pkt� �

Figure 5: Pseudocode for the data-plane implementation of
Cebinae’s leaky-bucket filter. Keywords, constants, builtins,
and stateful variables are color-coded.

Definition 2 and Section 3.2, this is simply the flow(s) on the link
with the maximum observed rate.

Cebinae detects these bottleneck flows with a heavy-hitter cache
in the egress pipeline. The goal is to accurately track both (𝑎) the
size of the largest flow and (𝑏) the IDs of any flows of similar size
without false positives. Cebinae can leverage any of the recently
proposed techniques that satisfy both; our prototype adapts the
HashPipe mechanism [49].

Compared to prior heavy-hitter caches [7, 49], Cebinae’s data
structure minimizes memory management overhead. Prior caches
manage memory actively, with eviction logic in the data plane that
tries to avoid replacing active heavy hitters. This eviction logic is
expensive, for example it often requires packet recirculation [7].
Cebinae eliminates such overheads by passively managing cache
memory. After every interval, all entries are evicted to the control
plane, giving every active flow another chance to claim an entry.
Intuitively, active heavy hitters are the most likely to (re)claim their
entry, simply because they send the most packets.

Concretely, Cebinae’s heavy-hitter cache uses multiple stages of
hash-mapped flow tables. A packet arriving at a stage is hashed to
an entry, and it either increments its byte counter (if the entry is
unused or is for the packet’s flow) or proceeds to the next stage (if
the entry is already used by another flow). If there is no room for
a packet in any of the stages, it is simply not counted. The entire
data structure is polled and reset by the control plane (ideally in
a serializable fashion [60]) after every interval dT. Cebinae finds
the maximum byte counter, 𝑐max, of any flow and declares flows

224

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

as ‘bottlenecked’ if their byte counts 𝑐𝑖 satisfy 𝑐𝑖 ≥ 𝑐max · (1 − 𝛿𝑓).
Partial pseudocode for this process is in Figure 4.

4.3 Coarse-grained Rate Enforcement
When a port is saturated and the set of locally bottlenecked flows
identified, Cebinae proceeds to cap and tax the bottlenecked flows
in the ingress pipeline. Cebinae’s mechanism for enforcing fair-
ness draws inspiration from calendar-queue-based leaky bucket
filters [48]. We refer readers to [48] for details, but at a high level,
calendar queues are capable of injecting loss, latency, and ECN bits
(based on virtual queue lengths) to passing flows by scheduling
packets in current or future physical queues and periodically ro-
tating queue priorities so that the drained queues can be reused.
Cebinae, however, makes several innovations to ensure practicality
and scalability.

In particular, instead of trying to enforce static, per-flow fair-
ness with a deep set of future calendar queues, Cebinae imple-
ments dynamic rate enforcement by tracking only two flow groups—
bottlenecked (abbreviated as⊤) and unbottlenecked (abbreviated as
⊥)—and using only two total queues/priorities (headq and ¬headq).
These changes lead to material and fundamental differences in the
approach’s design, implementation, and scalability. They also intro-
duce significant challenges to membership and rate changes, but
we discuss solutions to those below.

Figure 5 includes the pseudocode for Cebinae’s rate enforcement.
For each packet, it takes the rate allocation of the target flow group
(⊤/⊥) and computes the expected send time of the packet [lines
23–25]. Cebinae translates this send time to a time bucket and
associated physical queue. If the send time is past the current queue,
Cebinae delays the packet (put in a lower-priority queue) [line 31];
if it is past the currently available queues, Cebinae drops the packet
[line 33]. The control plane periodically rotates the priorities of old,
empty queues to continually generate lower-priority queues for
future traffic.

Reducing the required priority levels to just two.As previously
mentioned, Cebinae’s restriction on queue utilization introduces
several challenges. For example, with only two queues, the baseline
implementation may not have sufficient time to drain an old queue
before it is needed again. This situation can result in the switch
dropping all incoming packets until the rotation is completed. Ce-
binae addresses this with two techniques.

The first is a mechanism for virtual pacing within a physical
queue. We observe that the primary bottleneck for queue rotations
is the worst-case queue drain time. In particular, with the baseline
implementation and sufficient hardware buffers, if flows were to
send their full rate allocations (

∑
𝑟 ∈Rates 𝑟 ∗ dT = BW ∗ dT) at the

end of the round, it would take dT, i.e., the full round to drain the
queue completely. Instead, Cebinae limits these ‘catch-up’ bursts by
creating virtual rounds within each physical round. Virtual rounds
in the same physical round share a priority and do not affect the
worst-case burst allowance of the system; however, they ensure
that at the end of a round, the previous queue will drain within
vdT. With the extra time, Cebinae can perform operations on the
previous queue before it is needed again.

The second mechanism is a strict-real-time technique for queue
rotation/modifications. Queue rotations are triggered by precisely

tuned hardware packet generators that are found on modern pro-
grammable switches. Updates of base_round_time are synchronized
to the timing of these packets. In fact, Cebinae uses the first RO-
TATE packet to set its initial value (by stepping backward by vdT+𝐿)
to bootstrap the time origin of the state machine. Even the control
plane is synchronized to these packets—it detects their headq flips
and executes asm pause instructions until it can be sure that headq
is again stale and drained.

To adhere to these timings, the control plane has a configurable
𝐿 seconds to complete the queue priority swap and any other neces-
sary operations. If the control plane cannot complete all operations
in 𝐿 time, it will truncate its tasks (e.g., not moving a flow ⊤ ↔ ⊥)
to make its deadline; it can make the change in the subsequent
round. Figure 6 depicts the precise timeline of all operations.

This real-time approach is markedly different from the event-
driven model of other calendar-queue systems, and it is what en-
ables our 2-queue approach. We note that it also imposes tighter
efficiency bounds and eliminates the need for packet digests and
recirculation overhead.

Reducing the required flow tracking groups to just two. Cebi-
nae also reduces the granularity of flow tracking from needing to
track the utilization of all flows to only tracking the utilization of
two flow groups. This simplification saves SRAM, eliminates the
possibility of hash-collision unfairness, and also substantially re-
duces the full-utilization 𝐵𝑝𝑅 requirement of Equation (1) (both by
reducing the denominator of the expression and leveraging statisti-
cal multiplexing effects on buffer_req [4]). Flows will still compete
within their respective groups just as they do today; rather, the goal
is to nurture ⊥ flows in the absence of the bottlenecked flows.

We note that the data plane still needs to identify flows’ bot-
tleneck status; however, the information is only for ⊤ flows and
is static (i.e., implementable in match-action tables, where hash
collisions with ⊥ flows are not an issue).

Supporting dynamic rate changes. To implement the Cebinae
tax, a key feature is the ability to continuously adjust the rate allo-
cations. These adjustments, however, need to respect the real-time
guarantees developed above. To see why this is challenging, con-
sider a rate change 80%/20%→20%/80% (⊤/⊥). A naïve implementa-
tion might allow a ⊤ flow to consume 80% of the link bandwidth
before the rate change and a ⊥ flow to consume 80% after the
change.

Cebinae addresses this problem by only allowing changes on
the boundaries between physical queues. Specifically, Cebinae fixes
each logical queue’s rates as soon as it becomes available for sched-
uling—the queue’s rates can only change when it is the fully drained
headq. Cebinae integrates these heterogeneous rates [lines 15–20].

Supporting dynamic membership changes. In addition to sup-
porting dynamic rate changes, Cebinae also needs to support dy-
namic membership changes as flows become (un-)bottlenecked by
the current link. We must take care when implementing these mem-
bership changes to avoid spurious packet reordering, especially for
flows that we wish to grow.

As an example, consider a flow, 𝑓 , that is transitioning from
[⊤ → ⊥]. Further, assume that the ⊤ flow group has exhausted its
allocation in headq (and is placing packets in ¬headq), while the ⊥

225

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

time t
0

t0 + vdT

DP

CP

headq
guaranteed

empty

…

t
0
 + dTt0 + vdT + L

control plane
guaranteed

finished

sleep for
dT - L

detect rotation
finished

round
advances

round
advances

ROTATE
triggered

virtual round
advances

end
changes

start
changes

Figure 6: The timeline of Cebinae’s control plane (CP) and
data plane (DP) actions during each time bucket, dT. All
priority and configuration changes are completed during the
period marked by the solid red line.

flow group still has capacity in headq. After the transition, newer
packets of 𝑓 may be placed in a higher priority queue than existing
packets from 𝑓 .

Cebinae prevents this scenario by noting that, for a brief pe-
riod (i.e., 𝑡0 + 𝑣𝑑𝑇 to 𝑡0 + 𝑣𝑑𝑇 + 𝐿 in Figure 6), only one hardware
queue contains packets. Thus, membership changes during this
period will not result in any reordering. We note that this window
does not align with the transition periods for rate allocations, but
aggregate rates will still be respected (and worst-case drain time
maintained). Further, any observed discrepancies in rate allocation
can be corrected in the next 𝑑𝑇 round (by over/under-allocating
bandwidth).

Supporting phase changes. The above strategy may not be effi-
cient enough for a wholesale change of membership/rates involved
in a phase change between port saturation and non-saturation.
Cebinae, therefore, implements phase changes with a separate
mechanism (omitted from Figure 5). During the saturated phase,
the Cebinae data plane will track a third per-port byte counter
(total_bytes[]) that is computed in the same way as bytes[]. The
counter will not be used to filter packets until the port becomes
unsaturated, when the control plane (during its configuration pe-
riod) will flip a boolean flag and begin applying the total_bytes[]

filter to all incoming traffic immediately. In this way, the member-
ship/rate change is atomic, prevents reordering, and maintains the
real-time queue drain guarantee.

Transitioning fromunsaturated→saturated is also executed atom-
ically during a control-plane configuration period; however, in
this case, the first packet of each flow group will set bytes[f] =

total_bytes[port] * (rate[f] / BW[port]).

4.4 Configuring Cebinae
We now discuss the parameters of Table 1. Several of these could
benefit from an understanding of the network traffic characteris-
tics (e.g., skewness among flows) or an adaptive reconfiguration
based on Cebinae’s real-time measurements, but we note that con-
servative values for all of them result in a correct implementation
that eventually mitigates the unfairness caused by ⊤ flows (though
perhaps slowly).

Utilization thresholds (𝜹𝒑/𝒇). In Cebinae, links are marked satu-
rated if they are within 𝛿𝑝 of their capacity over the measurement
period. Flows are marked as bottlenecked if they are within 𝛿𝑓 of
the maximum flow’s rate. In both cases, 𝛿𝑝/𝑓 determines Cebinae’s
aggressiveness, with small values leading to only a few taxed flows
in the most heavily congested networks and large values leading
to faster redistribution. We anticipate that smaller values (e.g., 1%)
will be more common.

Tax rate (𝝉). 𝜏 determines how much bandwidth Cebinae attempts
to redistribute in each protocol iteration. The primary effect is to
adjust the rate of convergence to fairness, with higher 𝜏 leading
to faster convergence but more potential instability. Like the 𝛿s,
we anticipate relatively small 𝜏s, which still promote fairness but
minimize overheads. Again we find that 1% is a robust value for a
wide range of configurations.

Recomputation period (𝑷). Utilization and taxes are computed
over 𝑃 , a discrete time window. 𝑃 is defined in terms of dT and
should be an integer multiple thereof. To be resilient to burstiness,
𝑃 should be large enough to capture typical-RTT-timescale effects,
which provide a lower bound for utilization tracking. Larger values
of 𝑃 slow the convergence time of the system but are, again, safe.

Control plane deadline (𝑳). The parameter 𝐿 is constrained by
two factors. The first is the need to rotate queues every dT, ne-
cessitating 𝐿 ≤ 𝑑𝑇 − 𝑣𝑑𝑇 . The second is its role as a deadline for
control plane actions. For the latter, we can compute the theoretical
maximum by examining the number of registers and table entries
that must be read/written in every iteration. In practice, we can
reduce this lower bound by considering only typical amounts of
membership change with outliers handled in subsequent rounds.

We can reduce it even further by taking advantage of the un-
derlying two-phase updates [60] and 𝑃 , the recomputation pe-
riod. Specifically, if the actual control-plane computation time,
�̂� ≤ (𝑃 −1) ·dT ≃ 𝑅𝑇𝑇 , then all changes can be made in the shadow
copy before they are needed, reducing the effective 𝐿 parameter to
zero. Priority swaps should still be applied every dT.

Virtual bucket duration (vdT). For vdT, its primary effects are
to limit ‘catch-ups.’ It also has an effect on the lower bound of dT
through Equation (2). Lower is better, and the ideal setting is the
minimum precision of the data plane clock.

Physical bucket duration (dT). Finally, dT is an important pa-
rameter that determines the bytes allowed into the two physical
queues/priorities. In general, lower values enforce more aggressive
control because Cebinae’s relaxations to fair queuing mean that
loss and delay are only injected at dT boundaries (although, again,
higher values are safe and approximate the behavior of today’s
networks).

A lower bound is given by a modified version of Equation (1).
In particular, while Equation (1) ensures that flows in AFQ have
sufficient virtual buffer space to satisfy their protocol-specific needs,
Cebinae goes one step further. Deriving from the design goals of
Section 4, we wish to ensure that for a flow group with sufficient
allocation, all of the switch buffer is available at all times, regardless
of connection sending patterns. This guarantee should continue
to hold even during the period in which new packets can only be
placed in ¬headq (i.e., [𝑡0, 𝑡0 + vdT + 𝐿]). Said differently, even if a

226

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Throughput [Mbps] Goodput [Mbps] JFI

Btl. BW RTTs [ms] Buf. [MTU] CCAs FIFO FQ Cebinae FIFO FQ Cebinae FIFO FQ Cebinae

100Mbps {20.8, 28} 250 {NewReno:2, NewReno:8} 98.95 95.62 95.92 95.35 92.16 92.44 0.740 0.982 0.999
100Mbps {20.4, 40} 350 {Cubic:8, Cubic:2} 98.96 98.95 98.00 95.37 95.37 94.45 0.539 1.000 0.980
100Mbps {20.4, 60} 500 {Vegas:2, Vegas:8} 98.88 98.83 98.88 95.29 95.24 95.29 0.873 1.000 0.993
100Mbps {200} 1700 {NewReno:16, Cubic:1} 98.28 90.99 94.53 94.38 87.61 91.02 0.446 0.995 0.925
100Mbps {100} 850 {NewReno:16, Cubic:1} 98.72 91.45 95.58 95.11 88.10 92.08 0.857 0.998 0.960
100Mbps {50} 420 {NewReno:16, Cubic:1} 98.90 93.86 95.37 95.30 90.45 91.90 0.936 0.999 0.993
100Mbps {50} 420 {Vegas:16, Cubic:1} 98.90 98.90 95.47 95.30 95.30 91.99 0.096 1.000 0.988
100Mbps {100} 850 {Vegas:16, NewReno:1} 98.71 97.77 95.67 95.07 94.19 92.16 0.093 0.999 0.985
100Mbps {100} 850 {Vegas:128, NewReno:1} 98.88 98.74 97.45 95.26 95.10 93.88 0.189 0.966 0.976
100Mbps {60} 500 {Vegas:8, NewReno:8, Cubic: 2} 98.87 98.02 96.52 95.27 94.45 93.00 0.510 0.991 0.973
1Gbps {5} 420 {NewReno:32, Cubic:8} 989.8 989.8 985.4 954.0 954.0 949.7 0.844 0.988 0.955
1Gbps {10} 850 {Vegas:128, Cubic:1} 989.8 989.8 968.0 954.0 954.0 932.9 0.048 0.966 0.953
1Gbps {10} 850 {Vegas:1024, Cubic:2} 989.8 989.8 949.2 953.6 953.6 914.1 0.275 0.833 0.846
1Gbps {50} 4200 {NewReno: 128, BBR: 1} 988.7 923.6 981.6 952.7 890.0 945.8 0.992 0.975 0.990
1Gbps {50} 4200 {NewReno: 128, BBR: 2} 988.9 953.9 979.9 952.8 919.2 944.2 0.951 0.963 0.981
1Gbps {50} 21000 {NewReno: 128, BBR: 2} 988.8 953.9 963.8 952.7 919.2 928.7 0.773 0.963 0.936
1Gbps {100} 8350 {NewReno: 128, BBR: 2} 986.9 938.2 956.3 950.7 903.9 921.1 0.884 0.968 0.967
1Gbps {10} 850 {Vegas:64, NewReno:1} 989.8 989.8 976.2 953.8 954.0 940.7 0.042 0.967 0.976
1Gbps {100} 8500 {Vegas:4, NewReno:128} 986.9 917.6 957.3 950.8 884.1 922.2 0.946 0.970 0.971
1Gbps {100, 64} 8500 {Vegas:4, NewReno:128} 988.4 941.1 959.8 952.4 906.8 924.7 0.956 0.970 0.964
1Gbps {100} 8500 {Vegas:8, NewReno:128} 987.0 936.1 964.4 950.8 901.8 929.0 0.921 0.968 0.969
1Gbps {10} 850 {Vegas:128, BBR:1} 989.8 989.8 987.3 954.0 954.0 951.5 0.886 0.965 0.985
1Gbps {100} 8500 {Bic:2, Cubic:32} 985.1 960.3 952.6 944.9 924.9 911.3 0.799 0.999 0.946
10Gbps {50, 44} 41667 {NewReno:128, Cubic:16} 9876 9705 9780 9514 9352 9420 0.917 0.969 0.968
10Gbps {28, 28} 25000 {NewReno:128, Cubic:128} 9891 9856 9787 9532 9498 9432 0.863 0.942 0.952

Table 2: Results for a range of different network configurations that include varying bandwidth, RTT, and congestion control
algorithms. The cases cover intra- and inter-CCA unfairness, RTT unfairness, loss-based protocols (NewReno, Cubic), and
delay-based or hybrid algorithms (Vegas, BBR).

large burst of packets arrives just before 𝑡0 + vdT + 𝐿, the switch
should be able to admit as many packets as its physical buffer can
hold. The resulting constraint is:

(𝑡0 + dT − (𝑡0 + vdT + 𝐿)) · BW ≥ buffer

(dT − (vdT + 𝐿)) · BW ≥ buffer (2)

Accounting for the aforementioned optimizations to 𝑣𝑑𝑇 and 𝐿, the
bound on dT approaches dT ≥ buffer

BW .

Summary. When configuring a Cebinae router, operators should
carefully tune 𝛿𝑝 , 𝛿𝑓 , and 𝜏 to trade off efficiency and degree of un-
fairness mitigation, with a preference for conservative values. The
remainder of the parameters can be set from network characteristics.
With a single-round control plane: 𝑃 should be set to capture the
maximum RTT of the network; vdT should be set to the precision
of the dataplane clock (e.g., 1 nanosecond); 𝐿 can be decided based
on the typical flow-membership churn; and dT ≥ buffer

BW + vdT + 𝐿.
When the control plane can span multiple rounds, dT ≥ buffer

BW +vdT.

5 EVALUATION
We implement a hardware prototype of Cebinae on a testbed that
consists of a Wedge100BF-32X switch (emulating two switches for a
dumbbell topology) and a set of servers with Mellanox ConnectX-4
NICs. To enable more extensive evaluation, precise tracing, and fair
comparison with its alternatives under a wide range of background
conditions, we also implement Cebinae as ns-3.35 [3] traffic control
layer modules attached to L2 NetDevices (encoding the Cebinae
state machine and data-plane, control-plane operations described
in Figures 4 to 6). In total, the core implementation consists of 2,000
lines of P4 and Lucid [50] for the data plane, 1,500 lines of C++

for the control plane, and around 1,500 lines of C++ for the NS-3
module. The code and scripts are open-sourced for reproducibility.

Methodology and overview. We evaluate Cebinae over a wide
range of network conditions (RTT, speed, and buffer size) and com-
binations of congestion control algorithms. As comparison points,
we replicate all experiments with FIFO drop-tail queues and fair
queues. For the latter, we utilize NS-3’s FQ-CoDel variant [1, 2],
which combines both Deficit Round Robin (DRR) (for fair queuing
over a large number of queues) and CoDel (an Active Queue Man-
agement scheme). We change the default 1024 queues in FQ-Codel
to 232 − 1 = 4, 294, 967, 295 to ensure an ideal per-flow queue.

Similar to prior work on congestion-control unfairness [25, 44,
46, 54, 57], we choose a representative set of popular congestion con-
trol algorithms (CCAs) used in the Internet today: NewReno [43],
Cubic [24], Vegas [52], BBRv1 [15]. NewReno represents the classic
approach to loss-based congestion control, Cubic is the current
default algorithm on Linux and Windows Server (Bic [59] being its
older version), TCP Vegas represents a classic combined use of la-
tency/loss, and BBR is a next-generation protocol recently proposed
by Google that eschews loss to directly compute the bandwidth and
delay of the network.

5.1 Cebinae Is Agnostic to the CCA
Table 2 shows the results for a sweep of network conditions. In
each case, we measure fairness for a set of long-lived, heteroge-
neous flows competing over a single bottleneck with infinite de-
mand [54, 56]. While Cebinae is effective across a range of config-
urations, as a test of its robustness, we fix the configuration to a
relatively conservative set of parameters: 𝛿𝑝 = 1%, 𝜏 = 1%, 𝛿𝑓 = 1%.
We examine several metrics: average bottleneck link throughput,
average application goodput (representing efficiency), and Jain’s

227

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
o

o
d

p
u

t
[M

b
p

s
]

Flow index

FIFO Cebinae

Figure 7: The goodput for 16 TCP Vegas flows (0–15) and a
NewReno flow (16) competing over a 100Mbps bottleneck
with and without Cebinae. Cebinae moves the skewed unfair
allocation towards fairness with little efficiency impact.

Fairness Index (JFI) [27] over the entire evaluation period (100 s).
We delve into some of these results below.

We note that different congestion control algorithm configura-
tions, while having the same application data rate demand per flow,
could lead to different levels and types of unfairness, Cebinae can
reduce the degree of unfairness regardless. Similarly, we also find
Cebinae robust to different configurations of the same congestion
control algorithm because fundamentally, Cebinae treats them as a
black box and is agnostic of their concrete implementation.

5.2 Cebinae Mitigates Unfairness
From Table 2, we can see that across a wide range of congestion-
control configurations and latencies, Cebinae improves the net-
work’s fairness. Cebinae achieves this fairness augmentation with
little-to-no efficiency impact as Cebinae enforces penalties only
when the link is saturated and only towards⊤ flows. The remaining
impacts become negligible with less aggressive tax rates or ⊥ flows
that can quickly reclaim available bandwidth headroom. In the fol-
lowing sections, we dive deeper into various aspects of Cebinae’s
performance.

Preventing aggressiveness. One egregious case is when 16 Vegas
flows (delay-based) compete with 1 NewReno flow (loss-based) over
a 100Mbps link, each flow having equal RTTs and demands. With
FIFO, the single NewReno flow takes over around 80% bandwidth,
as shown in Figure 7, resulting in persistent unfairness and an
average JFI as low as 0.093. Cebinae, instead, improves the fairness
by redistributing the bandwidth of the NewReno flow and allowing
the rest of the flows to grow their share; the resulting average JFI
is an order of magnitude higher at 0.984. Figure 8a illustrates a
similar case when 128 NewReno flows compete with 2 BBR flows
over a 1Gbps link with equal RTTs and demands. Cebinae taxes
the excessive bandwidth claimed by the BBR flows and improves
JFI from 0.774 to 0.936.

Mitigating starvation. Another case is when 128 NewReno flows
compete with 4 Vegas flows over a 1Gbps link with the same per-
flow demand and RTTs of 100ms and 64ms, respectively. While the
initial JFI provides seemingly high values (0.956), this is a result of
the fact that the majority of NewReno flows (with their dominating
flow count) get a relatively fair allocation. This masks the unfair
allocations towards the 4 Vegas flows, as depicted by the detailed
goodput distribution in Figure 8b. Cebinae mitigates the starvation

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

(a)

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

(b)

Figure 8: (a) 128 NewReno v.s. 2 BBR flows over 1Gbps link
where Cebinae prevents biased rate allocation towards ag-
gressive flows. (2) 128 NewReno v.s. 4 Vegas flows 1Gbps link
where Cebinae mitigates the starvation effects.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128 256
J
F

I
RTT [ms]

FIFO
FQ

Cebinae

 0

 100

 200

 300

 400

 16 32 64 128 256

G
o
o
d
p
u
t
[M

B
p
s
]

RTT [ms]

FIFO
FQ

Cebinae

Figure 9: Cebinae mitigates unfairness upon various degree
of RTT asymmetries for Cubic flows over a 400Mbps link.

effect towards the 4 Vegas flows and further improves JFI from 0.956
to 0.964, again, with little efficiency impact.

Reducing RTT unfairness. Cebinae can also mitigate unfairness
due to RTT differences, as shown in Table 2. To that end, wemeasure
the degree of fairness when 4 Cubic flows compete with another 4
Cubic flows sharing the same 400Mbps bottleneck link and 3MB
switch buffer (similar to the setting in [24]). The first group has a
fixed RTT of 256ms and the other group of flows has RTTs ranging
from 16ms to 256ms, resulting in an asymmetry ratio of up to 16×.
Figure 9 shows that Cebinae can mitigate the unfairness due to
RTT variances with minimal efficiency degradation.

5.3 Cebinae Pushes Towards Max-min Fairness
The prior settings have shown Cebinae’s effectiveness in mitigating
unfairness. To be clear, even with a fixed set of flows and infinite
demand, the port saturation status, flow bottleneck membership,
and rate accounting in Cebinae change dynamically as a result of
underlying bursty packet arrivals and bandwidth reshuffling (e.g.,
when the ⊤ flows react aggressively to penalties and ⊥ flows ramp
up, leading to ⊤ membership migrations), as in Figure 1.

Figure 10 illustrates the JFI time series for a scenario when a
set of Vegas flows reach a stable state, then a NewReno flow and a
Cubic flow join at around 5 s and 25 s, respectively.Without Cebinae,
the system enters an unfair state. Cebinae, however, pushes the
network towards a fairer direction and mitigates the unfairness.

We also examine Cebinae’s effects under a multi-bottleneck set-
ting. Concretely, 8 NewReno flows traverse 3 switches contending
with 2 Bic, 8 Vegas, and 4 Cubic flows at 3 separate 100Mbps bottle-
necked links in a ‘Parking Lot’ topology [8, 29]. All flows have the
same application data rate. Figure 11 depicts the average goodputs

228

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 10 15 20 25 30 35 40 45 50

J
F

I

Time [s]

FIFO FQ Cebinae

Figure 10: JFI time series (measured per second) for good-
put starting from time 0 (stable state of 32 Vegas flows). A
NewReno and a Cubic flow arrives at around 5 s and 25 s re-
spectively.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3 4 5 6 7 8 9 101112131415161718192021

G
o

o
d

p
u

t
[M

b
p

s
]

Flow index

Ideal FIFO Cebinae

Figure 11: 8 NewReno flows (0–7) contend with 2 Bic (8–9),
8 Vegas (10–17), and 4 Cubic flows (18–21) over 3 bottleneck
links. Cebinae promotes the JFI of the network 0.852 → 0.978.

{𝑟𝑖 } across the entire evaluation period (100 s) with and without Ce-
binae compared with the ideal global max-min fair allocation values
{𝑟𝑖 }. Initially, the NewReno flows get unfair goodputs due to their
larger number of hops, RTTs, and the more aggressive protocols
along its path, Cebinae can move the network towards max-min
fairness by taxing the aggressive flows and releasing headroom for
other flows. Here, JFI quantifies the distance to the ideal allocation
per max-min fairness criterion [26, 30]: JFI = (∑𝑥𝑖)2∑

𝑥2
𝑖

where 𝑥𝑖 = 𝑟𝑖
𝑟𝑖
.

5.4 Cebinae Is Robust to Its Parameters
We explore the sensitivity of Cebinae to its parameters. In general,
we found that Cebinae is remarkably robust. While the specific rela-
tionship is a function of the workload pattern, network conditions,
and the behaviors of edge CCA algorithms as a whole, we find the
parameters’ trade-offs to be straightforward to reason about due to
their explicit physical semantics (Section 4.4).

In particular, we examine the JFI and application goodput of
several configurations in a scenario involving 16 NewReno flows
competing against 1 Cubic flow. As the parameters jointly determine
the aggressiveness of Cebinae operations (the transaction frequency,
the set of target flows to regulate, and the degree of penalties), we
vary 𝛿𝑝 , 𝛿𝑓 , and 𝜏 together and examine their effects.

Figure 12 shows that Cebinae generally improves fairness com-
pared to FIFO, and it provides comparable fairness to ideal fair
queuing. As expected, the application goodput decreases as a func-
tion of the aggressiveness of the parameters. In particular, it drops
sharply especially as the threshold crosses the fair share of the
flows. In the extreme case where all thresholds are set to 100% (an
unrealistic parameter set), flows will always be marked as bottle-
necked regardless of their status and their rate will be limited to 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

J
F

I

Thresholds [%]

FIFO

FQ

 0

 20

 40

 60

 80

 100

 1 10 100

G
o
o
d
p
u
t
[M

B
p
s
]

Thresholds [%]

FIFO
FQ

Figure 12: JFI and application goodput as a function of the
thresholds: 𝜹𝒑 , 𝜹𝒇 , and 𝝉 .

Cache
stages

Pipeline
stages

PHV SRAM TCAM VLIW
instrs.

Queues

1 11 937b 2448KB 15KB 89 64
2 11 1042b 4096KB 34KB 93 64

Table 3: Cebinae data plane resource usage on a 32-port
Tofino switch.

Overall, this confirms our intuition that conservative parameters
are generally preferable as they mitigate persistent unfairness via
taxing the dominating ⊤ flows while exerting minimal disturbance
to efficiency.

5.5 Cebinae Resource Usage Scales
Finally, Table 3 lists the total resource usage of the Cebinae data
plane with both one-stage and two-stage egress flow-cache configu-
rations (4096 slots per port per stage). Cebinae’s resource consump-
tion is less than 25% for all types of compute and memory resources,
which is less than HashPipe [49] for equivalent performance (in
addition to not requiring recirculation).

An important attribute of Cebinae is scalability with respect to
the number of flows. In contrast to AFQ, PCQ, or ideal FQ, the num-
ber of physical queues required remains constant as the number of
flows increases. SRAM utilization is the only metric that increases
with concurrent flows during each round cycle. The amount of
SRAM determines the accuracy of Cebinae’s detection data struc-
ture of top-1 flows. To evaluate this effect, we replay CAIDA [12]
traces collected from a 10 Gbps ISP backbone link to evaluate Ce-
binae’s detection accuracy of ⊤ flows. As shown in Figure 13a,
for environments with >400,000 flows/min, the default configu-
ration (2-stage, 2048 slots) provides negligible false positive rates
(< 0.005%) of ⊤ flow detection and relatively low false negatives
(< 10%) across common round intervals. Using more stages or slots
will further reduces the false negative rate (FNR) and false positive
rate (FPR) to 0, as shown in Figure 13b. This is on the order of 1000×
more flows than AFQ or PCQ can support on equivalent switch
hardware.

6 RELATEDWORK
Congestion control fairness has a long and rich history in the lit-
erature, with many protocols, measurements/metrics, and mech-
anisms [5, 6, 9, 13, 20–22, 25, 32, 35, 36, 40, 44, 46, 51, 53, 54, 57].
Cebinae focuses on deployments where flows are congestion con-
trolled but with a potentially heterogeneous set of algorithms. Its
goal is to prevent persistent unfairness and continuously approx-
imate the eventual max-min fair allocation. Cebinae’s taxing and

229

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

F
P

R
 [
1
0

-4
]

Round interval [ms]

1 stage
2 stage
4 stage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

F
N

R

Round interval [ms]

1 stage
2 stage
4 stage

(a) Varying round interval with 2048 slots

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 512 1024 2048 4096

F
P

R
 [
1
0

-4
]

Slot #

1 stage
2 stage
4 stage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 512 1024 2048 4096

F
N

R

Slot #

1 stage
2 stage
4 stage

(b) Varying slot number with 100ms interval

Figure 13: FPR and FNR of ⊤ flow detection for a range of
slot numbers and round intervals under CAIDA traces on a
10Gbps ISP backbone link (100 trials per data point).

redistribution approach is conceptually similar to the bandwidth
shuffling mechanism of XCP’s fairness controller [29]. However,
Cebinae presumes co-existence of legacy end-host algorithms (in-
teroperability) and does not require modifications of existing stacks
nor the additional header space to communicate the sender states
and rate decisions arbitrated by the switches.

Fundamentally, Cebinae falls into the category of in-network
fairness enforcement that do not require end host cooperation. In
this category, the most popular style of approach is fair queuing
and its many variants. As described in Section 2, existing proposals
for fair queuing require specialized hardware or face scalability
issues related to their need to track/schedule individual flows in
a manner that is fair on packet granularities. Compared to these
approaches, Cebinae represents a significant simplification—one
that sacrifices packet-granularity fairness at every instance of time
but retains unfairness mitigation properties.

Cebinae is also closely related to preferential dropping tech-
niques like RED-PD [38] and AFD [41], which try to achieve similar
results to fair queuing, but by dropping flows’ excess packets rather
than guaranteeing delivery of their fair share. RED-PD, in particular,
exploits the skewed flow rate distribution in the Internet and makes
a similar observation as Cebinae that a simpler, heavy-hitter-only
rate limit can be adapted to provide the same converged properties
as fair queuing. Aside from demonstrating an implementation on
commodity programmable hardware, Cebinaemakes two additional
contributions. The first is to propose a complete method of finding
the target maximum rate, rather than assuming that it is given. The
second is to consider support for non-loss-based protocols.

Finally, we note that Cebinae benefits from and builds directly
on top of a slew of recently proposed mechanisms in programmable
switches. These include calendar queues [48] (which inspired Cebi-
nae’s data-path rate-limiters), heavy hitter detection [49] (which
is necessary for bottleneck identification), as well as fast/consis-
tent control- and data-plane interaction [60] (which are used in

Cebinae’s periodic queue rotations). Cebinae can, therefore, benefit
from future advancements in hardware, techniques, or reactive
algorithms [33, 34, 50, 55, 61] in any of the above components.

7 FUTUREWORK
We note that Cebinae is amenable to a range of potential extensions
and optimizations. We lay out a few such directions.

Providing provable convergence properties. While Cebinae
presents a mechanism for scalable in-network fairness enforce-
ment, and it is able to prevent persistent unfairness and enter a
steady state in a bounded number of time steps, we leave a more for-
mal description and modelling of Cebinae’s convergence properties
under heterogeneous rate control and traffic behaviors to future
work. To that end, we note that Cebinae will not guarantee conver-
gence to max-min fairness, especially in the presence of adversarial
congestion control protocols. Instead, Cebinae targets a practical
method for improved fairness in typical network configurations.

We postulate that an extension of Cebinae that tracks each bot-
tleneck flow separately would provide the opportunity for much
stronger guarantees than what Cebinae currently provides. In par-
ticular, we expect it to guarantee equivalent network-level conver-
gence to fair queuing under the assumption of ‘eventual stability,’
i.e., that bottleneck flows eventually claim their allocated rates, but
we leave a proof to future work. The current version of Cebinae
does not pursue these guarantees in favor of better statistical mul-
tiplexing of bottleneck flows and the higher utilization it provides.

Fine-grained adaptation to current network conditions. Build-
ing on the above, another way to improve the robustness and per-
formance of Cebinae is to incorporate heuristics into the reaction
strategy, e.g., to limit unnecessary oscillations or to selectively
avoid penalties that will cause out-sized short-term fluctuations in
bottleneck flow goodput.

Other metrics. Finally, we leave an exploration of practical, in-
network mechanisms for other metrics of fairness for future work.

8 CONCLUSION
In today’s networks, protocol designers often sacrifice fairness
in service of performance and efficiency (either consciously or
subconsciously). Especially in public networks where users are free
to bring their own congestion control protocols, network operators
need practical mechanisms for enforcing conformance beyond static
allocation and over-provisioning. Cebinae provides exactly such
a mechanism, and materially improves upon the practicality and
scalability of prior approaches. Our evaluation results demonstrate
that Cebinae can enforce fairness across a wide range of congestion
control protocols.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We gratefully acknowledge Naveen Kr. Sharma, Jennifer Rexford,
Neal Cardwell, Vladimir Gurevich, our shepherd Sergey Gorinsky,
and the anonymous SIGCOMM reviewers for all of their help and
thoughtful comments. This work was funded in part by Google,
Meta, VMWare, and NSF grant CNS-1845749.

230

Cebinae: Scalable In-network Fairness Augmentation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] 2022. The Flow Queue CoDel Packet Scheduler and Active Queue Management

Algorithm. https://datatracker.ietf.org/doc/html/rfc8290. (January 2022).
[2] 2022. FQ-CoDel. https://www.nsnam.org/docs/release/3.35/models/

html/fq-codel.html. (January 2022).
[3] 2022. Network Simulator 3. https://www.nsnam.org. (January 2022).
[4] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router

Buffers. SIGCOMM Comput. Commun. Rev. 34, 4 (aug 2004), 281–292.
[5] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-Based} Con-

gestion Control for the Internet. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 329–342.

[6] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. 2007. YeAH-TCP:
yet another highspeed TCP. In Proc. PFLDnet, Vol. 7. 37–42.

[7] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
measurement on programmable switches using probabilistic recirculation. In 2018
IEEE 26th International Conference on Network Protocols (ICNP). IEEE, 313–323.

[8] Jean-Yves Le Boudec. 2021. Rate adaptation, Congestion Control and Fairness: A
Tutorial. https://leboudec.github.io/leboudec/resources/tutorial.html. (November
2021).

[9] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. 1994. TCP Vegas:
New techniques for congestion detection and avoidance. In Proceedings of the
conference on Communications architectures, protocols and applications. 24–35.

[10] Bob Briscoe. 2007. Flow rate fairness: Dismantling a religion. ACM SIGCOMM
Computer Communication Review 37, 2 (2007), 63–74.

[11] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Krishna-
murthy, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker. 2020. On the
future of congestion control for the public internet. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks. 30–37.

[12] Caida. 2022. The CAIDA UCSD Statistical information for the CAIDA
Anonymized Internet Traces. https://www.caida.org/data/passive/
passive_trace_statistics.xml. (2022).

[13] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: a TCP enhancement for
heterogeneous networks. International journal of satellite communications and
networking 22, 5 (2004), 547–566.

[14] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
14, September-October (2016), 20 – 53. http://queue.acm.org/detail.cfm?
id=3022184

[15] Neal Cardwell, Yuchung Cheng, S Hassas Yeganeh, and Van Jacobson. 2017. BBR
congestion control. Working Draft, IETF Secretariat, Internet-Draft draft-cardwell-
iccrg-bbr-congestion-control-00 (2017).

[16] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks and
ISDN systems 17, 1 (1989), 1–14.

[17] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. SIGCOMM Comput. Commun. Rev. 19, 4 (aug 1989), 1–12.
https://doi.org/10.1145/75247.75248

[18] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick McKeown.
2005. Processor Sharing Flows in the Internet. In Proceedings of the 13th Inter-
national Conference on Quality of Service (IWQoS’05). Springer-Verlag, Berlin,
Heidelberg, 271–285.

[19] S Floyd. 2008. RFC 5348 TCP-Friendly Rate Control (TFRC) Protocol Specification.
RFC 5348 Proposed Standard (2008).

[20] Cheng Peng Fu and Soung C Liew. 2003. TCP Veno: TCP enhancement for
transmission over wireless access networks. IEEE Journal on selected areas in
communications 21, 2 (2003), 216–228.

[21] Manfred Georg, Christoph Jechlitschek, and Sergey Gorinsky. 2007. Improving
individual flow performance with multiple queue fair queuing. In 2007 Fifteenth
IEEE International Workshop on Quality of Service. IEEE, 141–144.

[22] Sergey Gorinsky and Christoph Jechlitschek. 2007. Fair efficiency, or low average
delay without starvation. In 2007 16th International Conference on Computer
Communications and Networks. IEEE, 424–429.

[23] Sergey Gorinsky and Harrick Vin. 2008. Effairness: Dealing with Time in Con-
gestion Control Evaluation. In Fourth International Conference on Networking and
Services (icns 2008). IEEE, 40–45.

[24] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-Friendly
High-Speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5 (jul 2008), 64–74. https:
//doi.org/10.1145/1400097.1400105

[25] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental evaluation
of BBR congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP). IEEE, 1–10.

[26] Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness index: An
explanation. In ATM Forum contribution, Vol. 99.

[27] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A quantitative
measure of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA 21 (1984).

[28] Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, and Nick McKeown. 2019.
A distributed algorithm to calculate max-min fair rates without per-flow state.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 3, 2
(2019), 1–42.

[29] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for
High Bandwidth-Delay Product Networks. In Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM ’02). Association for Computing Machinery, New York, NY,
USA, 89–102.

[30] F. Kaudel. 1998. ATM Forum Performance Testing Specification
Draft. https://www.broadband-forum.org/technical/download/af-test-tm-
0131.000.pdf. (December 1998).

[31] Frank P Kelly, Aman K Maulloo, and David Kim Hong Tan. 1998. Rate control
for communication networks: shadow prices, proportional fairness and stability.
Journal of the Operational Research society 49, 3 (1998), 237–252.

[32] Tom Kelly. 2003. Scalable TCP: Improving performance in highspeed wide area
networks. ACM SIGCOMM computer communication Review 33, 2 (2003), 83–91.

[33] Xin Zhe Khooi, Levente Csikor, Jialin Li, Min Suk Kang, and Dinil Mon Divakara.
2021. Revisiting Heavy-Hitter Detection on Commodity Programmable Switches.
In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft).
IEEE, 79–87.

[34] Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. 2022. PrintQueue: Per-
formance Diagnosis via Queue Measurement in the Data Plane. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer com-
munication (SIGCOMM ’22). Association for Computing Machinery, Amsterdam,
Netherlands. https://doi.org/10.1145/3544216.3544257

[35] Douglas Leith and Robert Shorten. 2004. H-TCP: TCP for high-speed and long-
distance networks. In Proceedings of PFLDnet, Vol. 2004.

[36] Shao Liu, Tamer Başar, and Ravi Srikant. 2008. TCP-Illinois: A loss-and delay-
based congestion control algorithm for high-speed networks. Performance Eval-
uation 65, 6-7 (2008), 417–440.

[37] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.
Retro: Targeted resource management in multi-tenant distributed systems. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). 589–603.

[38] Ratul Mahajan, Sally Floyd, and David Wetherall. 2001. Controlling high-
bandwidth flows at the congested router. In Proceedings Ninth International
Conference on Network Protocols. ICNP 2001. 192–201. https://doi.org/10.
1109/ICNP.2001.992899

[39] John Nagle. 1987. On Packet Switches with Infinite Storage. IEEE Transactions on
Communications 35, 4 (1987), 435–438. https://doi.org/10.1109/TCOM.1987.
1096782

[40] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. 1998. Modeling
TCP throughput: A simple model and its empirical validation. In Proceedings of
the ACM SIGCOMM’98 conference on Applications, technologies, architectures, and
protocols for computer communication. 303–314.

[41] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003. Approximate
Fairness through Differential Dropping. SIGCOMM Comput. Commun. Rev. 33, 2
(apr 2003), 23–39.

[42] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor sharing
approach to flow control in integrated services networks: the single-node case.
IEEE/ACM transactions on networking 1, 3 (1993), 344–357.

[43] Larry L Peterson and Bruce S Davie. 2007. Computer networks: a systems approach.
Elsevier.

[44] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine Sherry,
and Vyas Sekar. 2021. Revisiting TCP Congestion Control Throughput Models &
Fairness Properties at Scale. Association for Computing Machinery, New York,
NY, USA, 96–103.

[45] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. 2012. FairCloud: Sharing the network in cloud
computing. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication. 187–198.

[46] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien
Geyer, and Georg Carle. 2018. Towards a Deeper Understanding of TCP BBR Con-
gestion Control. In 2018 IFIP Networking Conference (IFIP Networking) and Work-
shops. 1–9. https://doi.org/10.23919/IFIPNetworking.2018.8696830

[47] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Reconfigurable Switches. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). USENIX As-
sociation, Renton, WA, 1–16. https://www.usenix.org/conference/nsdi18/
presentation/sharma

[48] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable
Calendar Queues for High-speed Packet Scheduling. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
Santa Clara, CA, 685–699. https://www.usenix.org/conference/nsdi20/
presentation/sharma

231

https://www.nsnam.org/docs/release/3.35/models/html/fq-codel.html
https://www.nsnam.org/docs/release/3.35/models/html/fq-codel.html
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.caida.org/data/passive/passive_trace_statistics.xml
http://queue.acm.org/detail.cfm?id=3022184
http://queue.acm.org/detail.cfm?id=3022184
https://doi.org/10.1145/75247.75248
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1109/ICNP.2001.992899
https://doi.org/10.1109/ICNP.2001.992899
https://doi.org/10.1109/TCOM.1987.1096782
https://doi.org/10.1109/TCOM.1987.1096782
https://doi.org/10.23919/IFIPNetworking.2018.8696830
https://www.usenix.org/conference/nsdi18/presentation/sharma
https://www.usenix.org/conference/nsdi18/presentation/sharma
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://www.usenix.org/conference/nsdi20/presentation/sharma

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Liangcheng Yu, John Sonchack, and Vincent Liu

[49] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). Association
for Computing Machinery, New York, NY, USA, 164–176.

[50] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid: A
language for control in the data plane. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 731–747.

[51] Ion Stoica, Scott Shenker, and Hui Zhang. 1998. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed Networks.
SIGCOMM Comput. Commun. Rev. 28, 4 (oct 1998), 118–130.

[52] Ao Tang, Jiantao Wang, Sanjay Hegde, and Steven H Low. 2005. Equilibrium and
fairness of networks shared by TCP Reno and Vegas/FAST. Telecommunication
Systems 30, 4 (2005), 417–439.

[53] Ao Tang, Jiantao Wang, Steven H Low, and Mung Chiang. 2007. Equilibrium
of heterogeneous congestion control: Existence and uniqueness. IEEE/ACM
Transactions on Networking 15, 4 (2007), 824–837.

[54] Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. 2019. Fifty shades of
congestion control: A performance and interactions evaluation. arXiv preprint
arXiv:1903.03852 (2019).

[55] Shie-Yuan Wang, Hsien-Wen Hu, and Yi-Bing Lin. 2020. Design and implementa-
tion of tcp-friendly meters in p4 switches. IEEE/ACM Transactions on Networking
28, 4 (2020), 1885–1898.

[56] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
2019. Beyond Jain’s Fairness Index: Setting the Bar For The Deployment of
Congestion Control Algorithms. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks (HotNets ’19). Association for Computing Machinery, New
York, NY, USA, 17–24.

[57] Ranysha Ware, Matthew KMukerjee, Srinivasan Seshan, and Justine Sherry. 2019.
Modeling BBR’s interactions with loss-based congestion control. In Proceedings
of the internet measurement conference. 137–143.

[58] Jörg Widmer, Robert Denda, and Martin Mauve. 2001. A survey on TCP-friendly
congestion control. IEEE network 15, 3 (2001), 28–37.

[59] Lisong Xu, Khaled Harfoush, and Injong Rhee. 2004. Binary increase congestion
control (BIC) for fast long-distance networks. In IEEE INFOCOM 2004, Vol. 4.
IEEE, 2514–2524.

[60] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive pro-
grammable switches. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies, architec-
tures, and protocols for computer communication. 296–309.

[61] Liangcheng Yu, John Sonchack, and Vincent Liu. 2022. OrbWeaver: Using IDLE
Cycles in Programmable Networks for Opportunistic Coordination. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1195–1212. https://www.usenix.org/
conference/nsdi22/presentation/yu

232

https://www.usenix.org/conference/nsdi22/presentation/yu
https://www.usenix.org/conference/nsdi22/presentation/yu

	Abstract
	1 Introduction
	2 Background
	3 Conceptual Foundations
	3.1 Max-min Fairness
	3.2 The Cebinae Approach

	4 The Design of Cebinae
	4.1 Detecting Port Saturation
	4.2 Detecting Bottlenecked Flows
	4.3 Coarse-grained Rate Enforcement
	4.4 Configuring Cebinae

	5 Evaluation
	5.1 Cebinae Is Agnostic to the CCA
	5.2 Cebinae Mitigates Unfairness
	5.3 normalnormalCebinae Pushes Towards Max-min Fairness
	5.4 normalnormalCebinae Is Robust to Its Parameters
	5.5 Cebinae Resource Usage Scales

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

