
L i a n g c h e n g Y u , J o h n S o n c h a c k , V i n c e n t L i u

Cebinae:	
Scalable	In-network	Fairness	Augmentation

Public	networks	care	about	fairness

CCA′ ≠ CCA

CCA RTT

RTT′ ≠ RTT

Public Networks

Increasing heterogeneity

RTT
Unfairness

Inter-CCA
Unfairness

Fairness	enforcement	at	the	end	hosts?

Public Networks

Hard to deploy and upgrade the same CCA
Few incentives for self-policing mechanism

In-network	fairness	enforcement

Public
Networks

Incentives coming from operators
of the in-network devices

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware
• Constraints: e.g., # priorities, queues, buffers

In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities

• Assumption: specialized hardware for per-flow queues, end-host
cooperation…

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware
• Constraints: e.g., # priorities, queues, buffers

Challenging to strictly enforce FQ on each individual flow

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others
• Binary classification of flows

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time

• Penalize/redistribute BW from flows exceeding fair share to others
• Binary classification of flows

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

• Zero modifications and coordinations to/with legacy host CCAs
• Requirement of only two queues/priorities
• Compatibility with CCAs operating on both loss and delay signals

Cebinae router architecture for binary taxation

1. Conceptual foundation for binary classification

2. Cebinae’s taxation mechanism

3. Evaluation

Outline

Public
Networks

 l

An allocation of
rates {ri}

Max-min	fairness

For every flow there exists at least one bottleneck link where:
(1) is saturated
(2) is among the largest flows sharing the link

i l
l
ri l

Public
Networks

 l

An allocation of
rates {ri}

Max-min	fairness

For every flow there exists at least one bottleneck link where:
(1) is saturated
(2) is among the largest flows sharing the link

i l
l
ri l

Implication: distributed verification of max-min fairness

Local	verification
Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

Local	verification

Observation:
1. Each conditional can be determined

using only local information
2. Binary classification: bottlenecked

(), not bottlenecked ()⊤ ⊥

Each link can determine the set of bottlenecked flows:
If non-saturated:
 All flows not bottlenecked
Else, for each flow :
 If is among ’s largest rate(s)
 is bottlenecked at
 Else
 is not bottlenecked at

l
l

i
i l
i l

i l

Each link can determine the set of bottlenecked flows:
If non-saturated:
 NOP
Else, for each flow :
 If is among ’s largest rate(s)
 Drop packets of all s per their current rate
 Else
 NOP

l
l

i
i l

i

Naive	enforcement

Each link can determine the set of bottlenecked flows:
If non-saturated:
 NOP
Else, for each flow :
 If is among ’s largest rate(s)
 Drop packets of all s per their current rate
 Else
 NOP

l
l

i
i l

i

Naive	enforcement

Drawbacks:
1. Can not push an already-

unfair allocation fair
2. CCAs may not be

responsive to loss signals

Each link can determine the set of bottlenecked flows:
If non-saturated:
 NOP
Else, for each flow :
 If is among ’s largest rate(s)
 Penalize s with their taxed rate
 Else
 NOP

l
l

i
i l

i

Cebinae	taxation

Note:
1. Penalty box includes non-loss

signals such as delay
2. Taxed rate to collectively

redistribute the bandwidth to
non-bottlenecked flows

Each link can determine the set of bottlenecked flows:
If non-saturated:
 NOP
Else, for each flow :
 If is among ’s largest rate(s)
 Penalize s with their taxed rate
 Else
 NOP

l
l

i
i l

i

Cebinae	taxation

Note:
1. Penalty box includes non-loss

signals such as delay
2. Taxed rate to collectively

redistribute the bandwidth to
non-bottlenecked flows

Tax bottlenecked-flows exceeding
fair bandwidth share Redistribute to non-

bottlenecked flows

Instantiation:	Cebinae	router	architecture
1. Egress-pipeline cache: port saturation and flow status tracking

2. Ingress-pipeline leaky-bucket filter: flow taxation

3. Local CPU dynamic shuffling agent: egress state polling and
reconfiguration of flow membership, redistributed rates, and queues

⊤

⊤

⊤

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier headq

~headq

Normal	operation

1

Membership
Classification

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

1 2

Dynamic rate enforcement
with 2 flow groups and
FIFO queues

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

1 2

All buffer is
available at all
times

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Normal	operation

1 2 3

No should be
taxed, i.e., no false
positives

⊥

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Port
Saturation

Flow
Bottleneck

Port
Saturation

Flow
Bottleneck

ROTATE

Packet
Generator

Per-round	reconfiguration

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Port
Saturation

Flow
Bottleneck

Port
Saturation

Flow
Bottleneck

ROTATE

Packet
Generator

Virtual pacing : guarantee no reordering and avoid violation of
draining deadline in the worst case

Per-round	reconfiguration

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

Port
Saturation

Flow
Bottleneck

Port
Saturation

Flow
Bottleneck

ROTATE

Packet
Generator

Per-round	reconfiguration

Atomic transactions: LBF states and egress caches

• Is Cebinae agnostic to CCAs?

• Can Cebinae mitigates unfairness (RTT, inter-CCA)?

• Can Cebinae move towards max-min fairness?

• Is Cebinae easy to configure?

• Does Cebinae resource usage scale?

• …

Implementation	and	evaluation
Hardware prototype on a Wedge100BF Tofino switch testbed and NS-3 module

Cebinae	mitigates	unfairness

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
oo

dp
ut

 [M
bp

s]

Flow index

FIFO Cebinae

16 TCP Vegas (0–15)
v.s. 1 NewReno (16)

Cebinae	mitigates	unfairness

 1

 10

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
oo

dp
ut

 [M
bp

s]

Flow index

FIFO Cebinae

16 TCP Vegas (0–15)
v.s. 1 NewReno (16)

Mitigates the skewed and persistent unfairness with
little efficiency impact: JFI from 0.093 to 0.984

Cebinae	mitigates	unfairness

128 NewReno
v.s. 2 BBR

Mitigating starvation

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

Preventing aggressiveness

128 NewReno
v.s. 4 Vegas

Cebinae	mitigates	unfairness

128 NewReno
v.s. 2 BBR

Mitigating starvation

0.0
0.2
0.4
0.6
0.8
1.0

 0 2 4 6 8 10 12 14

C
D

F

Goodput [Mbps]

FIFO
Cebinae

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30 35 40

C
D

F

Goodput [Mbps]

FIFO
Cebinae

Preventing aggressiveness

128 NewReno
v.s. 4 Vegas

Cebinae	mitigates	unfairness

Cebinae	is	agnostic	to	CCAs

Summary
• No modifications nor coordinations to/with legacy host CCAs

• Real-time switch architecture serializing in-network compute modules

• COTS hardware and minimal resource requirements
• Two queues/priorities are sufficient

• Compatible with CCAs using both loss and non-loss signals
• Generic support of a wide range of Internet CCAs and environments

Thank you for your attention!
https://github.com/eniac/Cebinae

Port Saturation
Detector

Flow Bottleneck
Detector

Port Saturation
Detector

Flow Bottleneck
Detector

Ingress Egress

Control Plane

⊤

⊥
⊤

*

Packet
Generator

Classifier LBF

⊤

⊤

⊥

⊥

headq

~headq

