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Cebinae:	
Scalable	In-network	Fairness	Augmentation
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Fairness	enforcement	at	the	end	hosts?

Public Networks

Hard to deploy and upgrade the same CCA
Few incentives for self-policing mechanism



In-network	fairness	enforcement

Public 
Networks

Incentives coming from operators 
of the in-network devices



In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities 

• Assumption: specialized hardware for per-flow queues, end-host 
cooperation… 



In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities 

• Assumption: specialized hardware for per-flow queues, end-host 
cooperation… 

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware 
• Constraints: e.g., # priorities, queues, buffers



In-network	fairness	enforcement	
• Existing approaches suffer from limited practicalities 

• Assumption: specialized hardware for per-flow queues, end-host 
cooperation… 

• AFQ [NSDI ’18]: practical emulation of ideal FQ on COTS hardware 
• Constraints: e.g., # priorities, queues, buffers

Challenging to strictly enforce FQ on each individual flow
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Cebinae:	a	simpler	approach
• Relaxation of fairness at every instance in time 

• Penalize/redistribute BW from flows exceeding fair share to others 
• Binary classification of flows 

• Efficiently implement various subroutines (e.g., leaky-bucket filter)

• Zero modifications and coordinations to/with legacy host CCAs 
• Requirement of only two queues/priorities 
• Compatibility with CCAs operating on both loss and delay signals

Cebinae router architecture for binary taxation



1. Conceptual foundation for binary classification 

2. Cebinae’s taxation mechanism 

3. Evaluation

Outline
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Implication: distributed verification of max-min fairness



Local	verification
Each link  can determine the set of bottlenecked flows:  
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Local	verification

Observation:
1. Each conditional can be determined 

using only local information 
2. Binary classification: bottlenecked 
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Each link  can determine the set of bottlenecked flows:  
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Naive	enforcement

Drawbacks:
1. Can not push an already-

unfair allocation fair  
2. CCAs may not be 

responsive to loss signals



Each link  can determine the set of bottlenecked flows:  
If  non-saturated: 
    NOP 
Else, for each flow :  
    If  is among ’s largest rate(s) 
        Penalize s with their taxed rate 
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Cebinae	taxation

Note:
1. Penalty box includes non-loss 

signals such as delay 
2. Taxed rate to collectively 

redistribute the bandwidth to 
non-bottlenecked flows

Tax bottlenecked-flows exceeding 
fair bandwidth share Redistribute to non-

bottlenecked flows



Instantiation:	Cebinae	router	architecture
1. Egress-pipeline cache: port saturation and  flow status tracking 

2. Ingress-pipeline leaky-bucket filter:  flow taxation 

3. Local CPU dynamic shuffling agent: egress state polling and 
reconfiguration of  flow membership, redistributed rates, and queues
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with 2 flow groups and 
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Virtual pacing : guarantee no reordering and avoid violation of 
draining deadline in the worst case

Per-round	reconfiguration
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Atomic transactions: LBF states and egress caches



• Is Cebinae agnostic to CCAs? 

• Can Cebinae mitigates unfairness (RTT, inter-CCA)? 

• Can Cebinae move towards max-min fairness? 

• Is Cebinae easy to configure? 

• Does Cebinae resource usage scale? 

• …

Implementation	and	evaluation
Hardware prototype on a Wedge100BF Tofino switch testbed and NS-3 module
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Mitigates the skewed and persistent unfairness with 
little efficiency impact: JFI from 0.093 to 0.984



Cebinae	mitigates	unfairness
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Cebinae	mitigates	unfairness



Cebinae	is	agnostic	to	CCAs



Summary
• No modifications nor coordinations to/with legacy host CCAs 

• Real-time switch architecture serializing in-network compute modules 

• COTS hardware and minimal resource requirements  
• Two queues/priorities are sufficient 

• Compatible with CCAs using both loss and non-loss signals  
• Generic support of a wide range of Internet CCAs and environments

Thank you for your attention!
https://github.com/eniac/Cebinae
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